

Satellite Laser Ranging Concept Review

Experience Incorporated into the Replacement System Tom Zagwodzki

Goddard Space Flight Center Greenbelt, Maryland July 26, 2004

Experience Incorporated into the Replacement System

- Why replace the existing Goddard MOBLAS Network?
- Are we at the end of MOBLAS Network upgrade path?
- Current NASA SLR Challenge: Do more with less
- Existing SLR Network hazards
- Lessons learned in 25 years SLR
- Future Satellite Laser Ranging system capabilities
- Innovative hardware developed, key instrumentation
- MOBLAS/Next generation SLR comparison
- Where next generation SLR must be headed
- Technical Risks and Issues addressed by the SLR2000 prototype testbed

Why Replace the Existing SLR Network?

- Late 70's technology (7-10 cm RMS)
 - Nanosecond Q-switched lasers
 - Nanosecond response receivers
- Upgrade path has been exhausted
 - Laser, receiver electronics replaced
 - Telescope, mount, servo electronics 25+ years old
- Costly to operate/maintain
 - Custom built electronics
 - Spare parts unobtainable
- Operator hazards still exist
 - Electrical, chemical, ocular and toxic fume hazards are present
- More tracking demands made
- SLR techniques need to be updated
 - 24/7 tracking, new techniques, instrumentation, more computing power required

We are at the end of MOBLAS SLR Upgrade Path

- Network deployed late 70's
- Ranging hardware upgrades:
 - Q-switched lasers replaced early 80's (1 to 5 Hz upgrade)
 - Photomultiplier tube (PMT),
 Timing Discriminator (CFD), and
 Time Interval Unit upgraded in the mid-80's: (1-2 cm RMS)
- One CPU upgrade to Pentium
- RADAR and GPS epoch timing systems installed in 90's
- ➢ Four man crew reduced to single person operations in 90's
- MOBLAS systems "MAXed" out in data quality and quantity

Current NASA SLR Challenge

Do more with less: Track more satellites with less funding...

SLR Cost Per Pass Down

Current NASA Systems have improved data quality and quantity over last 10 years.

- Subsystem upgrades result in sub-centimeter performance
- Decreased operating costs through system improvements, automation, and crew crosstraining
- More satellite missions are being supported

Performance limits have been reached with existing systems

SLR Network Hazards Still Exist

- Electrical: Lethal HV capacitor banks for flash lamp pumping of laser rods
- Chemical: Flowing dye cell for Q-switching laser, gloves required (carcinogen)
- Fumes: Vented hood and respirator required
- Ocular: 100mJoules/pulse, safety goggles, mount safety observer required or radar
- Single man operation continues...

What we have learned in 25 years of SLR

- Data quality improves with shorter laser pulses and with higher bandwidth receivers, and data quantity goes up with system repetition rate
- Upgrade paths for new technologies and instrumentation must be open for future development
- SLR timing instrumentation errors need to be identified, quantified, and minimized
- > 24/7 operation is routine with adequate satellite predicts, appropriate receiver and electronics gating, FOV, BPF, etc.
- More real time computing power is always an advantage
- Multi-photoelectron returns are not required for accurate ranging: Use photons efficiently (i.e. single photon detection)
- Large telescopes with high power lasers are no longer required
- Laser electrical, chemical, and ocular hazards can be retired
- Partnering with the international SLR community improves tracking coverage and encourages new ideas and technologies at no additional cost

Future NASA SLR Systems will...

- Fully automated, no operator
- Centimeter ranging accuracy
- Track CCR equipped satellites to 20,000 km altitude, 24/7 operation
- No ocular, chemical, or electrical hazards
- Small, compact, self-monitoring, low maintenance, increased reliability
- Automated satellite scheduling
- Data processing and delivery via the internet
- Lower replication/operating costs
- Use as many COTS items as possible

Innovative Hardware Used in the Next Generation SLR System

- Multi-kHz diode pumped Nd:YAG microchip laser
- New quadrant microchannel plate (MCP) PMT
- Closed loop tracking with quadrant timing detector
- > Full aperture transmit and receive telescope use (eyesafe)
- Passive 2 kHz transmit/receive switch
- Risley prism point ahead of transmitted beam
- 2 kHz Event Timer/Range Gate Generator
- All sky thermal IR camera monitors sky conditions
- Signal recognition algorithms developed to pull the signal from the noise

Autonomous SLR Weather Station

Young 05103V Wind Speed Tracker & Monitor

Measures

- · Wind Speed
- Wind Direction

Paroscientific MET3 Meteorological Measurement System

Measures

- Pressure
- Temperature
- Humidity

All Sky Camera

- · Sky Visibility
- Cloud Cover

Camera

- · Remote System Monitoring
- System Security

Pelco MC3651H-2

System Troubleshooting

Vaisala FD12P Weather Sensor

Measures

- Visibility
- Precipitation
- Precipitation Type
- · Precipitation Rate

July 26, 2004

Next Generation SLR Key Instrumentation

MOBLAS/SLR2000 Comparison

Transmitted Energy 100 mJoules 130 uJoules

Repetition Rate 5 Hz 2000 Hz

Average Power .5 Watts .26 Watts

Accuracy ~1 cm RMS ~1 cm RMS

Av. return level 20-1000 pe's <1 pe

Measurements/sec 5 few ~ 1000

Next Generation SLR will Retire Tall Poles

Human operator must be replaced

- Smart weather instrumentation to access tracking conditions
- Automated console operations for system pointing and timing calibrations
- Automated closed loop satellite tracking algorithms
- Automated scheduling, flow and analysis of data products

Health and safety issues have been addressed

- Electrical, chemical, and fume hazards will be retired
- Eyesafe laser tracking operations

New key instrumentation developed...

- Low cost, low maintenance, high reliability laser transmitter
- Single photon detection quadrant receiver for time of flight measurement
- Innovative passive Transmit/Receive switch
- High speed Event Timer and Range Gate Generator

Technical Risks and Unresolved Issues Addressed by the SLR2000

- Adequate laser energy/lifetime not yet demonstrated
 - Although recent developments in laser design should retire this issue
- Quadrant MCP photomultiplier tube lifetime unknown
 - Current MCP tubes have up to 15 years operation in MOBLAS systems
 - Blanking of receive PMT (when laser fires) complicates observations
- Closed loop quadrant tracking not yet demonstrated
 - Risley point ahead optics are in place but not yet tested
 - Control algorithms written but untested
- > System automation/reliability testing is a lengthy process
- > Subsystem upgrade path needs consideration
 - System layout and configuration is upgrade friendly
- > SLR2000 testbed completion/success needed for risk mitigation
 - Demonstration of key subsystem techniques minimizes new engineering costs of proposing contractors
 - Knowledge of all subsystems operations and limitations are required for intelligent proposal selection